Part 3: Modeling Perspectives (decoding, distillation, and diffusion)

Wei Xu (Georgia Tech)

1. Decoding:

an inference-time solution to optimize LLM outputs (Survey by Welleck+ 2024 & Bertsch+, 2023; MBR with Multi-Prompt by Heineman+, 2024)

2. Distillation:

reproduce GPT-4 performance by small open-source LLMs (Edit-based generation by Dou+ 2024; Feedback to refine LLM outputs by Wadhwa+ 2024)

3. Diffusion:

an alternative to Transformer-based LLM (Diffusion-LM by Li+ 2022; DiffuSeq by Gong+, 2022; SeqDiffuSeq by Yuan+, 2024)

1. Decoding:

an inference-time solution to optimize LLM outputs

Besides data and model size, inference-time algorithms can make a big impact.

1. Decoding:

an inference-time solution to optimize LLM outputs

<|endoftext|>The capital of of the USA is

Besides data and model size, inference-time algorithms can make a big impact.

Hewitt et al., "Truncation Sampling as Language Model Desmoothing" (ENNLP Findings 2022)

Decoding

Given an input x (and prompt ho), an autoregressive LM parameterized by $\pi_{ heta}$ will estimate an output sequence:

$$y \sim \pi_{\theta}(x, \rho)$$

using an decoding algorithm.

Decoding - common strategies

- Greedy Decoding
- Searching, e.g., Beam Search

• Sampling, e.g.

predict the **next token** conditioned on the input $\pi_{ heta}(y_i|y_{< i}, x,
ho)$

- Temperature, or Top-k: sample from top k most likely words
- Nucleus: take the top p% (95%) of the distribution, sample from within that
- \circ Epsilon: simple truncation, allow any word with greater than ϵ probability

Decoding - common strategies

- Greedy Decoding
- Searching, e.g., Beam Search

• Sampling, e.g.

predict the **next token** conditioned on the input $\pi_{\theta}(y_i|y_{\leq i}, x, \rho)$

- Temperature, or Top-k: sample from top k most likely words
- Nucleus: take the top p% (95%) of the distribution, sample from within that
- \circ Epsilon: simple truncation, allow any word with greater than ϵ probability
- Reranking, e.g.
 - Minimum Bayes Risk
 - Speculative decoding

generate multiple **candidate sequences**, then select one from them.

- Early work (Bickel & Doksum '77)
- Statistical Machine Translation and Speech Recognition, since 1997
- LLM-era, since 2020:
 - Mostly, machine translation (Eikema+ '20; Fernandes+ '22; Freitag+ '22; Amrhein+ '22; and more)
 - More recently, generation:
 - Code Generation (Shi+ '22)
 - Summarization, Data-to-Text, Translation, Style Transfer (Suzgun+, '23)
 - Summarization, Date-to-Text, Translation, Image Captioning (Jinnai+, '24)
 - Text Simplification, Code Generation, Translation (Heineman+, '24)

High Quality Rather than High Model Probability:	
Minimum Bayes Risk Decoding with Neural Metrics	

Markus Freitag, David Grangier, Qijun Tan, Bowen Liang

Google Research, USA

It's MBR All the Way Down:
Modern Generation Techniques Through the Lens of Minimum Bayes Risk

Amanda Bertsch* and Alex Xie* and Graham Neubig and Matthew R. Gormley Carnegie Mellon University

From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models						
Sean Welleck	wellecks Genru, edu					
Carnegie Mellon University						
Amanda Bertsch [*]	abertsch fles.cmu.afu					
Carnegie Mellon University						

• Often deliver several points of performance improvement, over the standard beam search or sampling methods.

	R-1	R-2	R-L	BLEU
Summarization		XS	UM	
Sample-Once	37.9	16.1	30.6	11.4
Random	37.6	16.1	30.1	11.5
Majority Voting	37.8	16.2	30.6	11.4
MBRD-BLEURT	39.8	17.9	32.4	12.8
MBRD-BERTScore	41.2	19.0	33.4	13.5
Translation	$\mathrm{DE} \rightarrow$	• EN (Ger	man to E	nglish)
Sample-Once	68.1	45.9	63.9	39.0
Random	68.5	46.1	64.0	39.5
Majority Voting	70.2	48.7	66.1	40.9
majority toting				
MBRD-BLEURT	71.9	50.7	68.2	43.7

	SARI	BScore	LENS	sBL↓	Human	
Simplification	SIMPEVAL ₂₀₂₂					
T5-11B						
$MLE_{b=10}$	46.4	93.8	62.9	49.3	88.80	
MBR-LENS $ S =100$	46.1	93.8	74.4	44.6	90.13	
Close-source LLMs						
GPT-3.5 (0-shot)	41.4	93.4	60.7	31.8	90.77	
GPT-3.5 (5-shot)	42.4	94.1	69.0	33.2	92.70	
GPT-4 (0-shot)	43.7	94.3	73.5	29.1	93.63	
(Maddela+, '23)						

Suzgun et al. "Effective Text Generation via Minimum Bayes Risk Decoding" (ACL Findings 2023) Maddela et al. "LENS: A Learnable Evaluation Metric for Text Simplification". (ACL 2023)

Intuition: the best output <u>not only</u> have high probability (same as *maximum likelihood*), <u>but also</u> is consistent or similar to the other candidate outputs.

1. sample multiple sequences

Ohashi et al. "On the True Distribution Approximation of Minimum Bayes-Risk Decoding" (NAACL 2024)

1. sample multiple sequences

2. Compare each seq. to the others by a utility function

Ohashi et al. "On the True Distribution Approximation of Minimum Bayes-Risk Decoding" (NAACL 2024)

1. sample multiple sequences

2. Compare each seq. to the others by a utility function

3. Select the seq. that maximizes the expected utility over the estimated probability distribution over the seq.'s.

Intuition: the best output <u>not only</u> have high probability (same as *maximum likelihood*), <u>but also</u> is consistent or similar to the other candidate outputs.

More formally:

First sample a set of hypotheses \mathcal{H} from the model π_{θ} . then select the output that maximizes the expected utility U (or minimize the expected risk) with respect to a set of references \mathcal{R} :

$$\hat{y}_{\text{MBR}} = \arg\max_{y \in \mathcal{H}} \left(\mathbb{E}_{\mathcal{H} \sim \pi_{\theta}} \left[U(y, \mathcal{R}) \right] \right)$$

Intuition: the best output <u>not only</u> have high probability (same as *maximum likelihood*), <u>but also</u> is consistent or similar to the other candidate outputs.

More formally:

can be the same or different set, often about 10~1000 sequences generated by sampling or beam search

First sample a set of hypotheses \mathcal{H} from the model π_{θ} . then select the output that maximizes the expected utility U (or minimize the expected risk) with respect to a set of references \mathcal{R} .

$$\hat{y}_{\text{MBR}} = \arg\max_{y \in \mathcal{H}} \left(\mathbb{E}_{\mathcal{H} \sim \pi_{\theta}} [U(y, \mathcal{R})] \right)$$

Main challenges:

- $O(|\mathcal{H}|^2)$ computation time for utility function
- number of sample $|\mathcal{H}|$ << number of all possible hypotheses $|\mathcal{Y}|$

Interesting research directions:

- choice of sampling algorithm to collect \mathcal{H} (and \mathcal{R} , if different)
 - appear to be critical (Ohashi+ '24)
 - probabilistic sampling better than beam search? (Eikema+ '20, Fernandes+ '22, Freitga+ '23)
- approximation for estimating the probability distribution in expected utility
 - model-based estimation (Jinnai+ '24a)
- promoting diversity (Heineman+ '24, Jinnai+ '24b)
- reducing computation time for utility function (Tomani+ '24)

Diverse Prompting + MBR Decoding

Heineman et al. "Improving Minimum Bayes Risk Decoding with Multi-Prompt" (2024)

Diverse Prompting + MBR Decoding

Heineman et al. "Improving Minimum Bayes Risk Decoding with Multi-Prompt" (2024)

Diverse Prompting + MBR Decoding

- no single prompt consistently produces the highest quality sequences
- different prompts are most effective at different inputs

Heineman et al. "Improving Minimum Bayes Risk Decoding with Multi-Prompt" (2024)

Diverse Prompting + MBR Decoding

- However, simply using many prompts may introduce too much noise
- Instead, estimate the probability distribution of prompts on a dev set, then

 (1) top-p prompt sampling
 (2) prompt selection:
 - closest similarity
 - greatest dissimilarity
 - k-NN cluster

Diverse Prompting + MBR Decoding

- consistent, further improvement over standard MBR across generation tasks
- works for both open-source and black-box LLMs

				standard MBR	multi-prompt MBR			
				•				
Code Generation ($ \mathcal{H} $	=20) – Hum	ANEVAL (pass@1)	Code Generation ($ \mathcal{H} = 20) - HUM$	ANEVAL (pass@1)	$T_{\text{remulation}} \left(\left 2 \right \right = 100 \right)$		'22 EX Ca (C
StarCoder 2 15B	44.51	49.39 (+4.88)	StarCoder 2 15B	44.51	49.39 (+4.88)	$\frac{1}{2} \frac{1}{2} \frac{1}$	- w M I	22 EN-US (U
CodeLlama 7B	37.80	40.85 (+3.05)	CodeLlama 7B	37.80	40.85 (+3.05)	WM1 22 Winners	91.9	-
CodeLlama 13B	43.29	48.17 (+4.88)	CodeLlama 13B	43.29	48.17 (+4.88)	MS Iranslate API	90.6	-
CodeLlama 34B	45.73	52.44(+6.71)	CodeLlama 34B	45.73	52.44 (+6.71)	ALMA 7B R	89.17	89.94 (+
CodeLlama 70B	61.59	68.90(+7.31)	CodeLlama 70B	61.59	68.90(+7.31)	ALMA 13B R	89.41	90.45 (+
GPT-3 5	68 29	7378(+549)	GPT-3 5	68 29	7378(+549)	GPT-3.5	91.27	91.35 (+
GPT-4	81.71	82.93 (+1.22)	GPT-4	81.71	82.93 (+1.22)	GPT-4	92.24	92.47 (+

Intuition: the best output <u>not only</u> have high probability (same as *maximum likelihood*), <u>but also</u> is consistent or similar to the other candidate outputs.

A number of widely used techniques with LLMs can be viewed as special cases of MBR

- self-consistency (Wang+ '23)
- range voting (Borgeaud+ '20)
- output ensembling (Denero+ '10, Lorenzo+ '23)
- density estimation (Kobayashi '18)

Intuition: Some tokens in the sequence are easier (can use a small LLM) to generate than others (ideally, use a larger LLM).

How to combine small and large LLMs to do this more efficiently?

1. generate γ tokens by a small (approximation) model

1. generate γ tokens by a small (approximation) model

2. use a large (target) model to generate next-token distributions for all γ +1 prefixes

1. generate γ tokens by a small (approximation) model

2. use a large (target) model to generate next-token distributions for all γ +1 prefixes

3. Decide which tokens to **accept** or **reject** (with a probability) based on the large model, and **sample** one more token from the large model

Collaborative Decoding

1

Intuition: The decision of deferral from a small model to a large model is learnt as a latent variable $Z_t \in \{0, 1, ..., M\}$ by optimizing the marginal likelihood:

$$P(X) = \prod_{t=1}^{T} \left(\sum_{Z_t=0}^{M} P_{\theta}(Z_t | X_{< t}) P_{Z_t}(X_t | X_{< t}) \right)$$

Shen et al. "Learning to Decode Collaboratively with Multiple Language Models" (ACL 2024)

Contrastive Decoding

Intuition: The failures of larger LLMs are even more prevalent in smaller LMs, thus the difference between the two can be a useful signal.

Continuations:

Greedy: Hawaii. He was born in Hawaii. He was born in Hawaii...

Nucleus: Washington, D.C., to Barack Obama and Michelle Robinson...

CD: 1961 to a Kenyan father, Barack Hussein Obama and a mother of American descent, Stanley Ann Dunham...

1. Decoding:

an inference-time solution to optimize LLM outputs (Survey by Welleck+ 2024 & Bertsch+, 2023; MBR with Multi-Prompt by Heineman+, 2024)

2. Distillation:

reproduce GPT-4 performance by small open-source LLMs (Edit-based generation by Dou+ 2024; Feedback to refine LLM outputs by Wadhwa+ 2024)

2. Distillation:

reproduce GPT-4 performance by small open-source LLMs

(prompt input1, output1)(prompt input2, output2)(prompt input3, output3)(prompt input4, output4)

generate ^{···} training data fine-tune

Task: Self-disclosure abstraction

Task: Self-disclosure abstraction

Definition: rephrase self-disclosures (personal information) with less specific details while preserving the content utility

I am exploring my sexual identity Im 16F I think I want to be a bi M + I have a desire to explore new options

I am attracted to the idea of exploring

different gender identities

Task: Self-disclosure abstraction

Definition: rephrase self-disclosures (personal information) with less specific details while preserving the content utility

I am exploring my sexual identity Im 16F I think I want to be a bi M I have a desire to explore new options I am attracted to the idea of exploring different gender identities

Why distillation? writing diverse abstractions is challenging for human annotators

Dou et al. "Reducing Privacy Risks in Online Self-Disclosures with Language Models" (ACL 2024)

Prompt

Your task is to abstract the given 'disclosure span' in the sentence. <more instruction>

Example 1:

Sentence: "Should I submit a 1470 SAT score to Carnegie Mellon and Duke?"

Disclosure Span to Revise: "1470 SAT score"

Rationale: <rationale>

Abstracted Spans: {"span 1": "a high 1400-range SAT score", "span 2": "an SAT score in the upper 1400s", "span 3": "an SAT score above 1450"}

<2 more examples>

First, provide a rationale explaining why the disclosure span needs abstraction. Then, offer three abstracted alternatives in a JSON format like this: {'span 1': xxx, 'span 2': xxx, 'span 3': xxx}.

Criteria: <3 criteria>

Sentence: "{sentence}" Disclosure Span to Revise: "{span}" Rationale:

Prompt			
Contains three in-context			
examples			
Large Model			
GPT-3.5 / 4			
Rationale and			
abstracted spans			

Use GPT-3.5 to generate abstractions of 780 instances for distilling Llama2 7B

Three training methods

Sampling three times from a model that generates one abstraction at a time

End-to-end training

model to generate three abstractions all at once

Iterative training model to

generate new abstraction given the previous ones.

input $\rightarrow A$, input+ $A \rightarrow B$, input+ $A+B \rightarrow C$

Human evaluation on three aspects with Likert scale

Dou et al. "Reducing Privacy Risks in Online Self-Disclosures with Language Models" (ACL 2024)

Human evaluation on three aspects with Likert scale

The distilled Llama2 7B can generate **diverse** abstractions that **moderately reduce privacy risks** while **maintaining high utility**.

Dou et al. "Reducing Privacy Risks in Online Self-Disclosures with Language Models" (ACL 2024)

1. Decoding:

an inference-time solution to optimize LLM outputs (Survey by Welleck+ 2024 & Bertsch+, 2023; MBR with Multi-Prompt by Heineman+, 2024)

2. Distillation:

reproduce GPT-4 performance by small open-source LLMs (Edit-based generation by Dou+ 2024; Feedback to refine LLM outputs by Wadhwa+ 2024)

3. Diffusion:

an alternative to Transformer-based LLM (Diffusion-LM by Li+ 2022; DiffuSeq by Gong+, 2022; SeqDiffuSeq by Yuan+, 2024)

3. Diffusion:

an alternative to Transformer-based LLM

Learning to generate data by iteratively denoising -- a big success in computer vision!

Ho et al. "Denoising Diffusion Probabilistic Models" (NeurIPS 2020)

Diffusion-LM (Li+ '22)

Several modifications to standard diffusion model to make it work on discrete text data (embedding/rounding steps), instead of the continuous image data.

DiffuSeq (Gong+ '22)

Extended Diffusion-LM to seq-to-seq generation tasks, by combining the source \mathbf{w}^x and the target \mathbf{w}^y into a continuous space \mathbf{z}_0 . Only impose noising on \mathbf{y}_t .

(experiments on dialogue, question generation, text simplification, paraphrasing)

Gong et al. "DiffuSeq: Sequence to Sequence Text Generation with Diffusion Models" (ICLR 2022)

Some other text diffusion models work directly in discrete space.

4 key designs: denoising network, noise schedule, objective function, and conditioning strategy

Diffusion Models for Non-autoregressive Text Generation: A Survey

Yifan Li¹, Kun Zhou^{2,3}, Wayne Xin Zhao ^{1,3} * and Ji-Rong Wen^{1,2,3}
 ¹Gaoling School of Artificial Intelligence, Renmin University of China
 ²School of Information, Renmin University of China
 ³Beijing Key Laboratory of Big Data Management and Analysis Methods

(a) Discrete text diffusion model.

(b) Continuous text diffusion model.