
Part 4: from method to usable system
Human-Centered NLP

Philippe Laban (Salesforce Research)

It seems like LLMs can already
perform & evaluate text editing tasks…

Is text editing “solved”?

What keeps us from using it in
practical settings?

(you might be too shy to ask…)

Going from a method
to a usable system:

Human-Centered NLP

An Intro to Human-Centered NLP

PART 1
Beyond the ML Method

Situation: I have built a cool NLP model
and I want to people to use it!

What should I consider when building the
system that uses my NLP method?

PART 2
Usability Testing Crash Course

Situation: I have built a system that uses my
NLP model. How do if “it works” for users?

A deep-dive into two usability studies of an
LLM-based text-editing system.

Technology is only one
aspect to consider when

building a System.

Important to also consider
what the Task is,
who the User is,

what the Interaction is,
and how the Ecosystem

works.

See this great paper surveying 115
papers in the space!

A Design Space for Intelligent and Interactive Writing Assistants, Lee et al. – CHI 2024

https://dl.acm.org/doi/full/10.1145/3613904.3642697

Task: What is the user trying to accomplish?

Example: consider the Writing Stage of the user.
What stage of writing does the system support?

(1) Idea Generation, (2) Planning, (3) Drafting, or (4) Revision?

Task: What is the user trying to accomplish?

Example: consider the Writing Stage of the user.
What stage of writing does the system support?

(1) Idea Generation, (2) Planning, (3) Drafting, or (4) Revision?

A chat interface might be
most adequate for these...

... auto-complete
for this

... & a Grammarly-style
text editor for this

(see the paper for other task considerations: Writing Context, Purpose, Specificity, and Audience)

Example: What are the target User Capabilities?

User: Who is the target user of the system?

(see the paper for other user considerations: Demographics, Relationship to System, System Output Preferences)

An international
Wikipedia Editor might need help with
 American English rules.

Example: What are the target User Capabilities?

User: Who is the target user of the system?

(see the paper for other user considerations: Demographics, Relationship to System, System Output Preferences)

A 6th Grade
 Student might need help spotting
 grammar & spelling issues.

Example: What are the target User Capabilities?

User: Who is the target user of the system?

(see the paper for other user considerations: Demographics, Relationship to System, System Output Preferences)

A Ph.D.
Student might need help making sure
 technical terminology is accurate.

Example: What are the target User Capabilities?

User: Who is the target user of the system?

(see the paper for other user considerations: Demographics, Relationship to System, System Output Preferences)

A professional
 writer might not want the system to
 make changes affecting their style

Example: What are the target User Capabilities?

User: Who is the target user of the system?

(see the paper for other user considerations: Demographics, Relationship to System, System Output Preferences)

The user’s capabilities and needs should be
considered during system design!

Example: How is the system output triggered? (Initiation)

Interaction: How do User, User Interface, and System interact?

(see the paper for other interaction considerations: Interface Paradigm, Visual Differentiation, Steering, Integration)

User-Initiated
Reactive

System-Initiated
Proactive

Example: How is the system output triggered? (Initiation)

Interaction: How do User, User Interface, and System interact?

(see the paper for other interaction considerations: Interface Paradigm, Visual Differentiation, Steering, Integration)

User-Initiated
Reactive

System-Initiated
Proactive

More natural for
Idea Generation & Planning

(ask for what you want)

More natural for
Revision, Grammar, Typos

(continuous scan & fix)

Example: What compatibility issues does the system consider?

Does the system align with
other systems in terms of

usability?

Ecosystem: Does the system fit in the overall ecosystem?

(see the paper for other interaction considerations: Access Model, Social Factors, Locale, Norms, Change over Time)

Usability
Consistency

Technical
Operability

With external services (APIs,
tangible world, etc.)

Task, User, Interaction, Ecosystem
...

What if I just want to build cool NLP
models?

Good news: You do not need to “check
all the boxes”.

But building useful systems likely
requires considering some of these.

Philippe Laban, Jesse Vig, Marti Hearst,
Caiming Xiong, Chien-Sheng Wu

UIST 2024

Let’s see it in action:

InkSync
Executable and Verifiable

Text-Editing with LLMs

In the past… you have probably sent an
email draft to ChatGPT, asking for
feedback on:

- How to change to the (+ formal)
- Fix typos/grammar
- Insert additional details
- Etc.

Motivation: Imagine that you are drafting an email

The LLM typically replies with a new version of
the document.
Pros:

- Ready-to-use
- Convenient to copy-paste

Cons:
- Editing suggestions are implicit
- Not easy to accept subset of edit

suggestions

We surveyed knowledge workers: most who
use LLMs for rewriting frequently accept LLM
rewrites verbatim. Most look at suggestions,
and decide which to include in their editor.

Motivation: LLM Typical Reply to Rewriting

Motivation: Reverse-Engineering the LLM Output

Using a string-alignment algorithm
(Levenshtein), we can recover the exact
edits proposed by the LLM: the characters
inserted and deleted.

This makes the editing suggestions more
explicit.
But such string alignment visualization is
not common in chat interfaces, and taking
editing actions based on this would require
manual work, that could be error-prone.

We could ask the LLM to provide its
feedback in bullet-point form? Adding this
to the prompt:

Sorry for the small font, answer is much
longer.
Pros:

- LLM provides explanations/reasons.
- Transparent: know how many edits

are suggested.
Con: Still hard to integrate, requires manual
work, so nobody does this.

Motivation: What if we ask for
explicit edits directly?

 In InkSync, we go a step
further, and ask the LLM to
generate executable edits, in a
standardized edit language.

Executable edits are first-class objects in
the text editor, which the user can review,
accept & dismiss in one click.

{
 “original_text”: “Hey Paul”,
 “replace_text”: “Dear Paul”,
 “replace_all”: “0”,
 “component”: “chat”,
 “new_info”: “0”
}

InkSync Demo!

InkSync has four components that can produce executable edits:

CHAT COMMENT MARKERS BRAINSTORM

https://inksync.salesforceresearch.ai/

https://inksync.salesforceresearch.ai/
https://inksync.salesforceresearch.ai/

InkSync Demo!

InkSync has four components that can produce executable edits:

CHAT COMMENT MARKERS BRAINSTORM

In this talk: we’ll look at two of them, see paper/demo for other two.

InkSync Demo

1. The user asks for
editing help
2. The LLM replies:
 2a. In plain text (in the
chat)
 2b. With a list of
executable edits
(viewed in the editor)
Because Chat is
LLM-based, it can
handle a broad range
of editing tasks.

CHAT

https://docs.google.com/file/d/1ozoYsEvGBoWo7sagQG8UnU2MIZN_wa5a/preview

InkSync Demo MARKERS

1. The user creates a
Marker once. (e.g.:
look out for Typos)

2. During editing,
Markers continuously
suggests executable
edits, running in the
background.

Markers = proactive
Chat = reactive

https://docs.google.com/file/d/1Lf9ApCceKC1jTOtUvkFeIpywty6YBP5f/preview

Aspect Dimensions Tags

How does InkSync fit in the Design Space?

Aspect Dimensions Tags

Task Writing Stage Drafting and Revision (not Idea Generation & Planning)

How does InkSync fit in the Design Space?

Aspect Dimensions Tags

Task Writing Stage Drafting and Revision (not Idea Generation & Planning)

User Demographic Profile Focused on Knowledge Workers (writing daily)

User Relationship to System Agency (easy to accept/dismiss individual suggestions),
Trust (Factuality Checking)

How does InkSync fit in the Design Space?

Aspect Dimensions Tags

Task Writing Stage Drafting and Revision (not Idea Generation & Planning)

User Demographic Profile Focused on Knowledge Workers (writing daily)

User Relationship to System Agency (easy to accept/dismiss individual suggestions),
Trust (Factuality Checking)

Interaction UI — Interface Paradigm Text Editor with Chat on the Side

Interaction UI — Visual Differentiation Formatting (Red/Green Styling)

Interaction UI — Initiation Both Reactive (Chat) and Proactive (Markers)

How does InkSync fit in the Design Space?

Aspect Dimensions Tags

Task Writing Stage Drafting and Revision (not Idea Generation & Planning)

User Demographic Profile Focused on Knowledge Workers (writing daily)

User Relationship to System Agency (easy to accept/dismiss individual suggestions),
Trust (Factuality Checking)

Interaction UI — Interface Paradigm Text Editor with Chat on the Side

Interaction UI — Visual Differentiation Formatting (Red/Green Styling)

Interaction UI — Initiation Both Reactive (Chat) and Proactive (Markers)

Ecosystem Model Access Does not allow for model change

Ecosystem Usability Consistency Visual Resemblance to other Text Suggestion systems

In summary: All dimensions might not be relevant to every project. But considering
where a project fits within the space can help situate the work & come up with ideas.

How does InkSync fit in the Design Space?

An Intro to Human-Centered NLP

PART 1
Beyond the ML Method

Situation: I have built a cool NLP model
and I want to people to use it!

What should I consider when building the
system that uses my NLP method?

PART 2
Usability Testing Crash course

Situation: I have built a system that uses my
NLP model. How do if “it works” for users?

A deep-dive into two usability studies of an
LLM-based text-editing system.✔

 Advice #1: Consider the Task & Participants Carefully

✔ Select participants that would
find the task “relevant”. ✘Recruit on MTurk for a task

that requires specialized skills.

✔ Think carefully of total task duration:
- Enough time for meaningful interaction & feedback
- Not too long to avoid burnout / skipping

✔ Plan for time to train/onboard participants on how to use the interface.

Task: Participants are given an email template from the “InkSync Travel Agency”
They have 6 minutes to:

- Objective A: Make sure it sounds professional / doesn’t have typos
- Objective B: Customize it to a travel destination / customer persona

They will use different kinds of interfaces with and without assistance.

InkSync Study 1: Task Setup

Decide on study design:
- Between-subjects: Each participant interacts with one condition
- Within-subjects: Each participant interacts with all conditions

Don’t just compare variations
of your system.

 Advice #2: Select Broad Study Conditions

✔ Make sure to select baselines and
“oracle” settings when possible. ✘

✔ Map potential differences in
conditions to research questions.

✔

Don’t overdo it. More
conditions = more participants.✘

Six conditions:

InkSync Study 1: Study Conditions

Manual Editing
(Baseline)

Non-Executable Chat
(Baseline)

Chat Only

Markers Only Local Only InkSync 4-Components

- Recruit ~100 participants.
- Each completing 3 sessions (in random order) -> total 300 editing sessions
- Intro Material (2-min) + 3 x 6-min editing + 2-min survey + 5-min buffer

(you always need to include buffer time, unexpected things happen)

 Advice #3: Include Redundancy in Evaluation Signal

See great paper by Hua Shen et. al, 2023
Parachute: Evaluating Interactive Human-LM Co-writing Systems

✔ Evaluate Interaction Logs

✔ Ask Participants for Preference/Opinion

✔ Evaluate “Product/Artifact” of Study

✘ Don’t: Treat Participants as Annotators.
You will throw away a lot of good signal.

https://arxiv.org/abs/2303.06333

Objectives A/B
Scoring

InkSync Study 1: Evaluation Setup

INTERACTION LOGS ARTIFACT ANALYSIS PARTICIPANT OPINION

Editing Efficiency
(Levenshtein)

Component Usage
Popularity Hallucination Analysis

Divergence Analysis

Likert Usability
Questions

Condition Preference
Ranking

Redundancy = confirmation

InkSync Study 1: Example Completed Task

Gloria is
traveling with

2 children

Destination:
Egypt

InkSync Study 1: Objectives A/B Scoring

● “Markers”-like interactions help with
Objective A: constantly identifying &
remove typos / casual phrases.

● “Chat”-like interactions (even
non-executable) help with Objective B:
customization / idea generation.

● Combining both (InkSync Full) leads to the
best of both: components are
complementary.

No-Ex Chat

InkSync Study 1: Editing Efficiency

Edit Efficiency Analysis

● Participants with executable edits lead to
faster/more efficient editing.

● NoEx Chat even slower than Manual (!) ->
divided attention, more effort required.

● 4-Comp (Full interface) leads to fastest
editing -> complementary components.

InkSync Study 1: Condition Preference Ranking

Participants ranked the 3 interfaces
they used.

4-Comp most preferred, followed by
Chat. NoEx Chat & Manual least
preferred.

Participant Rank Preferences

InkSync Study 1: Hallucination Analysis

Manual analysis of ~300 editing sessions reveals:
- 28% of edited emails contain a minor factual error

- e.g., saying that Paris is an affordable European city
- 15% of edited emails contain a major factual error

- e.g., recommending a visit to a Zoo that closed in 2017

To mitigate such risks, we implement a framework that builds on top of
executable edits:

WARN - VERIFY - AUDIT

 When the LLM generates an
executable edit, it must populate
a new_info key: does the edit introduce
new information or not?

When new information is introduced,
there’s a risk of hallucination and the
user is warned.

(a manual analysis confirms GPT4
is ~97.5% accurate at this task)

{
 “original_text”: “Hey Paul”,
 “replace_text”: “Dear Paul”,
 “replace_all”: “0”,
 “component”: “chat”,
 “new_info”: “0”
}

When a warning is
shown, the user is
given an option to
verify the edit.

To verify the edit, the
LLM generates search
engine queries, that
the user can visit to
assess the edit’s
veracity.

Verification is
human-in-the-loop by
design.

InkSync Demo WARN & VERIFY

https://docs.google.com/file/d/16dlxzHPkHG3VSZfOI2bqkzux5_7RRS9o/preview

Because edits are
executed, we can trace
each character’s origin
(LLM-gen vs.
human-written).

We can trace characters
during editing sessions,
and design a view-only
auditing interface.

The auditor can verify
edits in the interface,
performing a final check
before the doc is
sent/published.

InkSync Demo AUDIT

https://docs.google.com/file/d/1saGc-mYMb7FZJkyMg1kFZbNmPchR2Gt4/preview

Objective: Study whether Warn-Verify-Audit can assist participants in detecting
and avoiding hallucinations.
Four conditions:

InkSync Study 2: Study Conditions

No Framework
(Baseline) Warn-Verify

Audit Warn-Verify-Audit

 Advice #4: Adapt the System for the Study

Problem: errors “only” occur in in 15–30% of documents, so not every
participant would see a hallucination.

Solution: modify the system to produce more hallucinations during
the study. Now each participant will encounter factual errors.

✘ A usability study is not a product review.

Control the environment as much as you can.✔

 Advice #5: Prepare to Deal with Cheaters

Unavoidable: some % participants don’t do the task well, either because:
(1) they don’t care, (2) they don’t understand.

✔
Expect to filter out 10-20% of
unengaged participants. Filter
all data, don’t cherry-pick.

✔ Make it easy to spot
unengaged participants. ✘

Don’t: “Force” participants to
complete task (they’ll find
another way to cheat)

✘
Don’t: withhold payment of
unengaged participant.
It’s a part of the game.

InkSync Study 2: Filter out any participant that doesn’t run any verification
during the study -> indicative of unengaged participant.

Edit- and Audit-time verification
are complementary & both help
detect and prevent factual errors.

We ran a second usability study
focused on the framework:

InkSync Study 2 High-Level
Results

Does Warn-Verify-Audit work?

Recap of Usability Study Advice

 #4: Adapt the System for the Study

 #5: Prepare to Deal with Cheaters

 #3: Include Redundancy in Evaluation Signal

 #2: Select Broad Study Conditions

 #1: Consider the Task & Participants Carefully

Questions? (don’t be shy!)

Some seed questions:
- Do Usability ever scale? What about statistical significance?

Don’t you always need 1000+ participants??
- My lab can’t afford paying for participants, what should I do?
- What is your favorite use-case for text-editing?
- I’m a young researcher, what problem should I tackle?

Yao Dou Claire GardentPhilippe Laban Wei Xu

https://acl2024-text-generation-tutorial.github.io/

https://acl2024-text-generation-tutorial.github.io/

